Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Since many Cyber–Physical Systems (CPS) interact with the real world, they are safety- or mission- critical. Temporal specification languages like STL (Signal Temporal Logic) have been developed to capture the properties that built CPS must meet. However, the existing temporal logics/languages do not provide a natural way to express the tolerance with which the timing properties must be met. As a consequence of this, the specified properties may be vague, the ensuing CPS design may end up being over- or under-provisioned, and the validation of whether the built CPS meets the specified CPS properties may turn out to be erroneous. To address these issues, a run-time verification methodology is proposed, that allows users to explicitly specify the tolerance with which timing properties must be met. To ensure the correctness of measurement-based validation of a built CPS, this article: (i) proposes a test to determine if a given measurement system can validate the properties specified in TTL, and (ii) proposes a measurement-based testing methodology to provide one-sided guarantee that the built CPS meets the specified CPS properties. The guarantees are one-sided in the sense that when the measurement-based testing concludes that the properties are met, then they are guaranteed to be met (so not false positive). However, when the measurement-based testing concludes that the properties were not met, then they may have met (there can be false negative). In order to validate our claims, we built a model of flying paster (part of the printing press that swaps in a new roll of paper when the current roll is about to finish) using Arduino Mega 2560 and two Hansen brushed DC motors and specified the timing constraints among the various events in this system, along with the tolerances with which they should be met in TTL. We generated the testing logic and validated that we get no false positive, even though we encounter 4.04% false negative. The rate of false negatives can be reduced to be less than any arbitrary value by using more accurate measurement equipment.more » « less
-
Many Cyber-Physical Systems (CPS) have timing constraints that must be met by the cyber components (software and the network) to ensure safety. It is a tedious job to check if a CPS meets its timing requirement especially when they are distributed and the software and/or the underlying computing platforms are complex. Furthermore, the system design is brittle since a timing failure can still happen e.g., network failure, soft error bit flip, etc. In this paper, we propose a new design methodology called Plan B where timing constraints of the CPS are monitored at the runtime, and a proper backup routine is executed when a timing failure happens to ensure safety. We provide a model on how to express the desired timing behavior using a set of timing constructs in a C/C++ code and how to efficiently monitor them at the runtime. We showcase the effectiveness of our approach by conducting experiments on three case studies: 1) the full software stack for autonomous driving (Apollo), 2) a multi-agent system with 1/10th scale model robots, and 3) a quadrotor for search and rescue application. We show that the system remains safe and stable even when intentional faults are injected to cause a timing failure. We also demonstrate that the system can achieve graceful degradation when a less extreme timing failure happens.more » « less
-
Connected Autonomous Vehicles (CAVs) are expected to enable reliable and efficient transportation systems. Most motion planning algorithms for multi-agent systems are not completely safe because they implicitly assume that all vehicles/agents will execute the expected plan with a small error. This assumption, however, is hard to keep for CAVs since they may have to slow down (e.g., to yield to a jaywalker) or are forced to stop (e.g. break down), sometimes even without a notice. Responsibility-Sensitive Safety (RSS) defines a set of safety rules for each driving scenario to ensure that a vehicle will not cause an accident irrespective of other vehicles' behavior. RSS rules, however, are hard to evaluate for merge, intersection, and unstructured road scenarios. In addition, deadlock situations can happen that are not considered by the RSS. In this paper, we propose a generic version of RSS rules for CAVs that can be applied to any driving scenario. We integrate the proposed RSS rules with the CAV's motion planning algorithm to enable cooperative driving of CAVs. Our approach can also detect and resolve deadlocks in a decentralized manner. We have conducted experiments to verify that a CAV does not cause an accident no matter when other CAVs slow down or stop. We also showcase our deadlock detection and resolution mechanism. Finally, we compare the average velocity and fuel consumption of vehicles when they drive autonomously but not connected with the case that they are connected.more » « less
-
As vehicles become autonomous and connected, intelligent management techniques can be utilized to operate an intersection without a traffic light. When a Connected Autonomous Vehicle (CAV) approaches an intersection, it shares its status and intended direction with the Intersection Manager (IM), and the IM checks the status of other CAVs and assigns a target velocity/reference trajectory for it to maintain. In practice, however, there is an unknown delay between the time a CAV sends a request to the IM and the moment it receives back the response, namely, the Round-Trip Delay (RTD). As a result, the CAV will start tracking the target velocity/reference trajectory later than when the IM expects, which may lead to accidents. In this article, we present a time-aware approach, Crossroads+, that makes CAVs’ behaviors deterministic despite the existence of the unknown RTD. In Crossroads+, we use timestamping and synchronization to ensure that both the IM and the CAVs have the same notion of time. The IM will also set a fixed start time to track the target velocity/reference trajectory for each CAV. The effectiveness of the proposed Crossroads+ technique is illustrated by experiments on a 1/10 scale model of an intersection with CAVs. We also built a simulator to demonstrate the scalability of Crossroads+ for multi-lane intersections. Results from our experiments indicate that our approach can reduce the position uncertainty by 15% in comparison with conventional techniques and achieve up to 36% better throughputs.more » « less
An official website of the United States government

Full Text Available